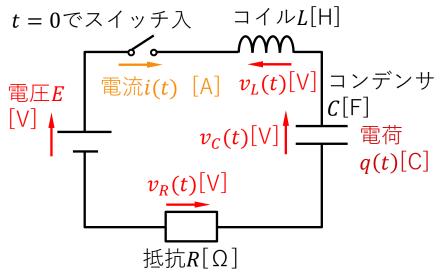
<u>過渡現象(14)</u> 《RLC直列回路-1》



f(t)	F(s)
<i>K</i> (定数)	$\frac{K}{s}$

微分定理
$$\mathcal{L}\left(\frac{df(t)}{dt}\right) = sF(s) - f(0)$$

 積分定理 $\mathcal{L}\left(\int f(t)dt\right) = \frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$
 線形定理 $\mathcal{L}af(t) = aF(s)$

①,②,③,⑥
$$\downarrow \iota$$
) $E = L\frac{i(t)}{dt} + \frac{1}{C}\int i(t)dt + Ri(t)$ ··· ⑦

⑦をラプラス順変換すると、

$$(4), (5) \downarrow V \qquad v_C(t) = \frac{1}{C} \int i(t)dt \qquad (6)$$

$$\frac{E}{s} = L \cdot sI(s) + \frac{1}{C} \cdot \frac{I(s)}{s} + RI(s) \qquad (1) \quad I(s) = E \cdot \frac{1}{s\left(R + sL + \frac{1}{sC}\right)}$$

<u>過渡現象(15)</u> 《RLC直列回路 - 2》

$$I(s) = E \cdot \frac{1}{s\left(R + sL + \frac{1}{sC}\right)} = E \cdot \frac{1}{L\left(s^2 + \frac{R}{L}s + \frac{1}{LC}\right)} = \frac{E}{L} \cdot \frac{1}{\left\{\left(s + \frac{R}{2L}\right)^2 + \left(\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right)\right\}} \cdots \otimes \frac{1}{\left\{\left(s + \frac{R}{2L}\right)^2 + \left(\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right)\right\}}$$

$$\blacksquare$$
 $\frac{1}{LC} > \left(\frac{R}{2L}\right)^2$ のとき、 $\alpha = \frac{R}{2L}$ $\omega^2 = \frac{1}{LC} - \left(\frac{R}{2L}\right)^2$ と置くと、⑧は、

$$I(s) = \frac{E}{L} \cdot \frac{1}{(s+\alpha)^2 + \omega^2} = \frac{E}{\omega L} \cdot \frac{\omega}{(s+\alpha)^2 + \omega^2} \cdots 9$$

f(t)	F(s)
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$

$$s$$
推移定理 $\mathcal{L}(e^{-at}f(t)) = F(s+a)$

⑨をラプラス逆変換すると、
$$i(t) = \frac{E}{\omega L} \cdot e^{-at} \cdot \sin \omega t = \frac{E}{\sqrt{\frac{L}{C} - \left(\frac{R}{2}\right)^2}} e^{-\frac{R}{2L}t} \cdot \sin \left(\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}\right) t$$

<u>過渡現象(16)</u> 《RLC直列回路-3》

$$I(s) = E \cdot \frac{1}{s\left(R + sL + \frac{1}{sC}\right)} = E \cdot \frac{1}{L\left(s^2 + \frac{R}{L}s + \frac{1}{LC}\right)} = \frac{E}{L} \cdot \frac{1}{\left\{\left(s + \frac{R}{2L}\right)^2 + \left(\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right)\right\}} \cdots \otimes \frac{1}{\left\{\left(s + \frac{R}{2L}\right)^2 + \left(\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right)\right\}}$$

$$\blacksquare$$
 $\frac{1}{LC} < \left(\frac{R}{2L}\right)^2$ のとき、 $\alpha = \frac{R}{2L}$ $\gamma^2 = \left(\frac{R}{2L}\right)^2 - \frac{1}{LC}$ と置くと、⑧は、

$$I(s) = \frac{E}{L} \cdot \frac{1}{(s+\alpha)^2 - \gamma^2} = \frac{E}{\gamma L} \cdot \frac{\gamma}{(s+\alpha)^2 - \gamma^2} \cdots 0$$

f(t)	F(s)
$\sinh \omega t \blacktriangleleft$	$\frac{\omega}{s^2 - \omega^2}$

双曲線関数
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$s$$
推移定理 $\mathcal{L}(e^{-at}f(t)) = F(s+a)$

⑩をラプラス逆変換すると、
$$i(t) = \frac{E}{\gamma L} \cdot e^{-at} \cdot \sinh \gamma t = \frac{E}{\sqrt{\left(\frac{R}{2}\right)^2 - \frac{L}{C}}} e^{-\frac{R}{2L}t} \cdot \sinh \left(\sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}\right) t$$

<u>過渡現象(17)</u> 《RLC直列回路 - 4》

$$I(s) = E \cdot \frac{1}{s\left(R + sL + \frac{1}{sC}\right)} = E \cdot \frac{1}{L\left(s^2 + \frac{R}{L}s + \frac{1}{LC}\right)} = \frac{E}{L} \cdot \frac{1}{\left\{\left(s + \frac{R}{2L}\right)^2 + \left(\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right)\right\}} \cdots \otimes \frac{1}{\left\{\left(s + \frac{R}{2L}\right)^2 + \left(\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right)\right\}}$$

$$I(s) = \frac{E}{L} \cdot \frac{1}{(s+\alpha)^2} \quad \cdots \text{ (1)}$$

f(t)	F(s)
t +	$\frac{1}{s^2}$

$$s$$
推移定理 $\mathcal{L}(e^{-at}f(t)) = F(s+a)$

①をラプラス逆変換すると、
$$i(t) = \frac{E}{L} \cdot e^{-at} \cdot t = \frac{E}{L} t e^{-\frac{R}{2L}t}$$

<u>過渡現象(18)</u> 《RLC直列回路-5》

②
$$\frac{1}{LC} = \left(\frac{R}{2L}\right)^2$$
 $O \ge 3$, $i(t) = \frac{E}{L}te^{-\frac{R}{2L}t}$

