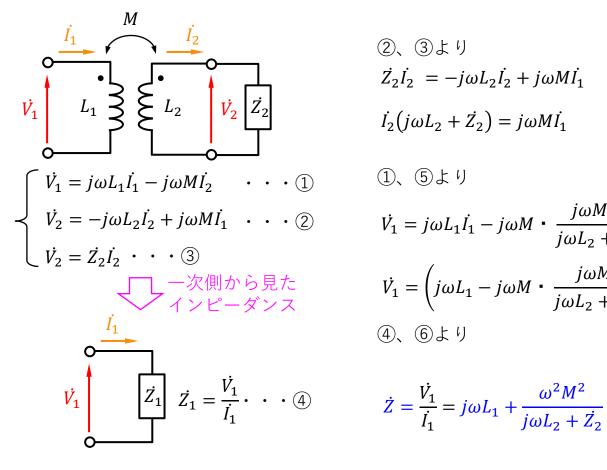

《変成器の入力インピーダンス》 相互インダクタンス(10)

- 一次側から見たインピーダンスは、
 - ■ \dot{Z}_2 が無限大(二次側解放)のとき、 一次側コイルの自己インダクタンスのみ

$$\dot{Z}_1 = j\omega L_1 + \frac{\omega^2 M^2}{j\omega L_2 + \infty} = j\omega L_1$$


- $\blacksquare \dot{Z}_2$ がゼロ(二次側短絡)のとき、
 - 一次側からみてもゼロ(短絡)となる (但し、k=1)

$$\dot{Z}_1 = j\omega L_1 + \frac{\omega^2 M^2}{j\omega L_2 + 0} = j\omega \left(L_1 - \frac{M^2}{L_2} \right)$$

 $M = k\sqrt{L_1L_2}$ より、 ※結合係数 k ($k \le 1$)

$$\dot{Z}_{1} = j\omega \left(L_{1} - \frac{\left(\frac{k\sqrt{L_{1}L_{2}}}{L_{2}} \right)^{2}}{L_{2}} \right) = j\omega \left(L_{1} - \frac{k^{2}L_{1}L_{2}}{L_{2}} \right) = j\omega \left(1 - k^{2} \right) L_{1}$$

相互インダクタンス(10)補足 《入力インピーダンスの導出》

 $\dot{V}_1 = j\omega L_1 \dot{I}_1 - j\omega M \cdot \frac{j\omega M I_1}{i\omega L_2 + \dot{Z}_2}$

$$\dot{V}_1 = \left(j\omega L_1 - j\omega M \cdot \frac{j\omega M}{j\omega L_2 + \dot{Z}_2}\right) \dot{I}_1 = \left(j\omega L_1 + \frac{\omega^2 M^2}{j\omega L_2 + \dot{Z}_2}\right) \dot{I}_1 \cdot \cdot \cdot \cdot \odot$$

4、**6**より

$$\dot{Z} = \frac{\dot{V_1}}{\dot{I_1}} = j\omega L_1 + \frac{\omega^2 M^2}{j\omega L_2 + \dot{Z_2}}$$