
水力発電(3)-1 《水車種類と用途の特徴》

衝動水車				反動水車			
ペノ	ルトン水車	ターゴ水車	クロスフロー 水車	フランシス水車	斜流水車 (デリア水車)	プロペラ水車 (カプラン水車)	チューブラ水車 (バルブ水車)
落差	150~800m	25~300m	1~200m	40~500m	40~180m	5~80m	2~25m
流量	~18m³/s	~8m³/s	0.1∼ m³/s	~140 m³/s	~170 m³/s	~290 m³/s	1.5∼180 m³/s
出力	~100MW	~10MW	~1MW	~270MW	~150MW	~100MW	~65MW
発電効率	定格:△部分:○	定格:△ 部分:○	定格:△ 部分:○	定格:◎ 部分:×	定格:○ 部分:×(斜流) ○(デリア)	定格:〇 部分:×(プロペラ) ○(カプラン)	定格:〇 部分:〇 (ランナベーン可変)
比 速度	12~23	15~30	40~200	60~300	180~230	250~850	400~800
<u>ተ</u> ተ <i>ላ</i> ካሪ	小流量・	ペルトンより小型・ 安価で低落差可	超低落差可で 小水力発電向け	適用落差が広く 高効率で最も普及	7ランシスとプロペラ の中間的な性質		小水力発電向け且つ 商用規模にも対応

<u>水力発電(3)-2</u> 《比速度》

比速度N。とは

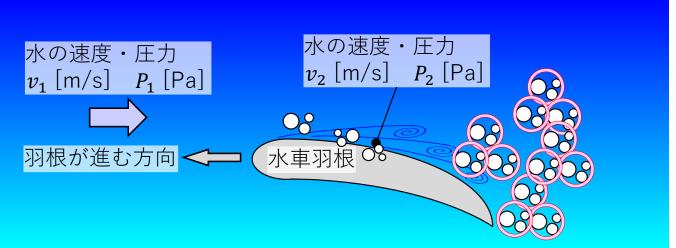
元の水車と相似な形状の水車を仮想して、 1[m]の落差の元で相似な状態(水の流れ)で運転させ、 1[kW]の出力を発生するような寸法としたときの 仮想水車の回転速度である。

比速度
$$N_s$$
の公式 $N_s = N \cdot \frac{P^{\frac{1}{2}}}{h^{\frac{5}{4}}} = N \sqrt{\frac{P}{\sqrt{h^5}}}$

比速度 高:高速回転、小型(安価) 比速度 低:低速回転、大型(高価)

但し、水車種類によって比速度の最良効率となる範囲 があり、これを逸脱すると効率低下やキャビテーション が発生して水車寿命を短くする。

比速度限界値 ペルトン水車 :
$$N_s \leq \frac{4300}{h+200} + 14$$
 低


フランシス水車 :
$$N_s \le \frac{23000}{h+30} + 40$$

プロペラ :
$$N_s \leq \frac{21000}{h+20} + 35$$

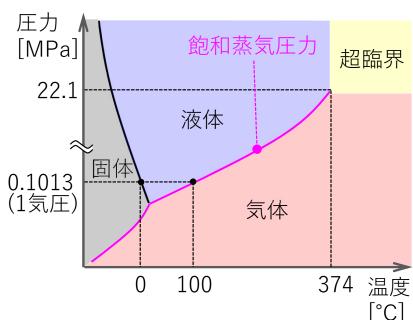
<u>水力発電(3)-3</u> 《キャビテーション》

キャビテーションとは

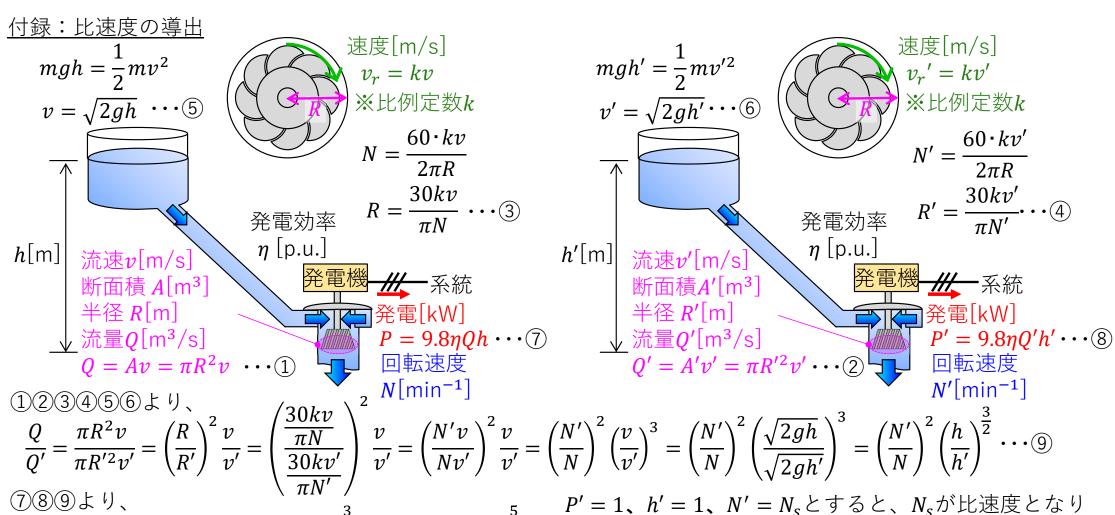
局所的に飽和蒸気圧力以下の領域ができると、水蒸気の気泡が生じ、飽和蒸気圧力以上の領域で気泡が凝縮して消滅する現象。 気泡が消滅する際、衝撃圧による振動・騒音・脈動が発生する。

ベルヌーイの定理 $mgh + \frac{1}{2}mv^2 + \frac{mP}{\rho} = -定$ 位置 運動 内部 Iネルキ - Iネル - $I\lambda N$ -

位置エネルギーは同じなので


$$\frac{1}{2}m{v_1}^2 + \frac{mP_1}{\rho} = \frac{1}{2}m{v_2}^2 + \frac{mP_2}{\rho}$$

 $v_2 > v_1 \ \, \downarrow \ \, \downarrow \ \, P_1 > P_2$


水車に与える悪影響

- ・衝撃圧や振動による金属部品の損耗
- ・水車効率の低下(気泡による空転)
- ・吸出管入口の水圧脈動

対策 水車比速度・吸出管高さを 高く取り過ぎない。

羽根車表面付近は流速が高まるので圧力が下がる。 飽和蒸気圧力以下になるとキャビテーションが生じる。

