
## 発電(1) 《発電の種類》



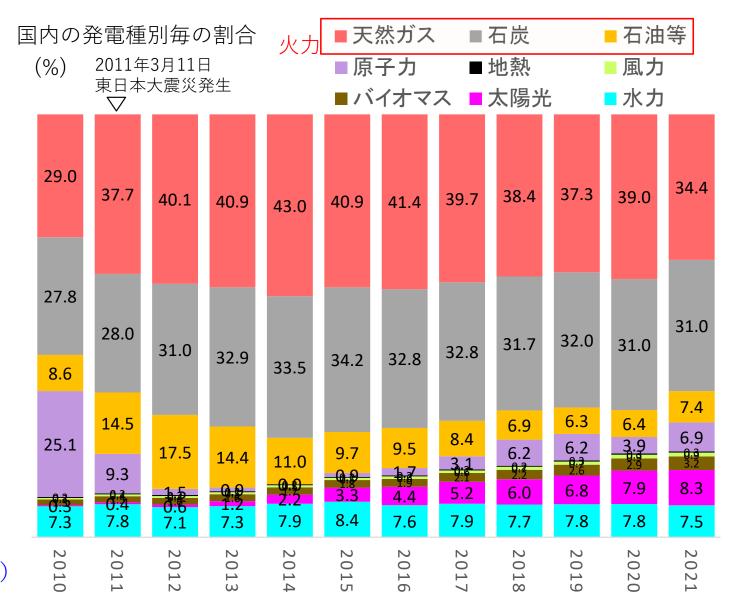
## 発電(1) 《発電燃料の現況》

## ■天然ガス(LNG)

最もCO2排出の少ない化石燃料である ため東日本大震災以降、利用が急増。 オーストラリア・マレーシア・カター ルから6割以上を輸入。

## ■石炭

温暖化防止観点から脱石炭化が求められているが、最も安定入手できる化石燃料であるため、未だに利用が多い。 7割をオーストラリアから輸入。


#### ■石油

オイルショック以降、脱石油化が進んでいる。9割を中東から輸入。

#### ■ウラン

原子力発電燃料であり脱CO2の流れにのって利用を増やしていたが、東日本大震災以降、利用が急減。ウランは地域的な偏在が少なく供給は安定。

一次エネルギー自給率:12%(2019年)



## 発電(1) 《電源種類毎の役割》

### 電源のベストミックス: 3E+Sの最適バランス

Energy Security(エネルギー安定確保)

**E**conomic Efficiency(経済面の効率性)

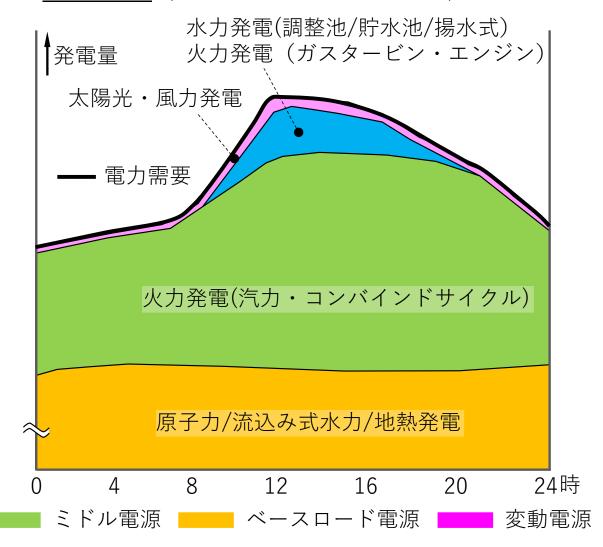
EnvironmentalConservation(環境保全)

**S**afety(安全性)

■ベースロード電源

特徴:発電コスト低・出力一定・起動時間長

■ミドル電源


特徴:発電コスト中・出力変動可能・起動時間中

■ピーク電源

特徴:発電コスト高・出力変動可能・起動時間短

ピーク電源

## 日負荷曲線(1日の中での電力需要の変化)



# 発電(1) 《発電方式毎の特徴》

| 発電方式 | 主な特徴                                           |
|------|------------------------------------------------|
| 火力   | 国内の主力発電方式。CO2を排出して環境負荷が大きい。化石燃料は有限な資源であり輸入に頼っ  |
|      | ている。他方式に比較して出力変動が可能であり、系統安定のための制御を主に担う。ミドル電源   |
|      | 用。発電コストが比較的低い。                                 |
| 水力   | CO2を排出せずに環境負荷が小さい国産のエネルギー。起動時間が短く出力変化が容易なピーク電  |
|      | 源に適す。国内の新たな建設余地が少ない。発電量が降水量の影響を受ける。            |
| 原子力  | CO2を排出せずに環境負荷が小さく発電コストが低い(但し、放射性廃棄物や廃炉費用を考慮すると |
|      | いずれも疑問)。ベースロード電源用。                             |
| 地熱   | CO2を排出せずに環境負荷が小さい国産のエネルギー。                     |
|      | ベースロード電源用。蒸気と共に噴出する腐食性ガスの対策が必要。                |
| 太陽光· | CO2を排出せずに環境負荷が小さい国産エネルギー。枯渇の心配がない。発電量が季節や天候の影  |
| 風力   | 響を受ける。他発電に比較してエネルギー密度が低く広大な面積が必要であり発電コストが高い。   |
|      | 国内の発電に適した場所が限られている。                            |
| バイオ  | カーボンニュートラルの考え方によりCO2増加につながらず環境負荷が小さい国産エネルギー(バ  |
| マス   | イオマスを輸入する場合を除く)。現状はトータルの発電コストが高い。              |
| 燃料電池 | 燃料から直接電気を生み出しCO2を排出しない(但し、燃料となる水素を製造する過程でCO2が排 |
|      | 出される)。分散型電源やコージェネレーションシステムに適す。                 |
|      | CO2を排出せずに環境負荷が小さい国産エネルギー。太陽光や風力と比較して発電が安定している。 |
| ルギー  | 海水により機器劣化が早い。エネルギー密度が低いため発電コストが高い。大規模化が難しい。    |